On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation

نویسنده

  • Zhaoyang YIN
چکیده

We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem and the Stability of Solitary Waves of a Hyperelastic Dispersive Equation

We prove that the Cauchy problem for a certain sixth order hyperelastic dispersive equation is globally well-posed in a natural space. We also show that there exist solitary wave solutions u(x, y, t) = φc(x − ct, y) that come from an associated variational problem. Such solitary waves are nonlinearly stable in the sense that if a solution is initially close to the set of such solitary waves, it...

متن کامل

Instability of Solitary Waves for a Nonlinearly Dispersive Equation

Solitary-wave solutions of a nonlinearly dispersive evolution equation are considered. It is shown that these waves are unstable in a certain parameter range.

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

Blow up in the Cauchy problem for a nonlinearly damped wave equation

In this paper we consider the Cauchy problem for the nonlinearly damped wave equation with nonlinear source utt −∆u + aut|ut|m−2 = bu|u|p−2, p > m. We prove that given any time T > 0, there exist always initial data with sufficiently negative initial energy, for which the solution blows up in time ≤ T. This result improves an earlier one by Todorova [11].

متن کامل

Stability of Solitary Waves for a Nonlinearly Dispersive Equation

Solitary-wave solutions of a nonlinearly dispersive equation are considered. It is found that solitary waves are peaked or smooth waves, depending on the wave speed. The stability of the smooth solitary waves also depends on the wave speed. Orbital stability is proved for some wave speeds, while instability is proved for others.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008